Category Archives: High Performance Computing (HPC)

Inauguration of 1st European Petaflop Computer in Jülich, Germany

On Tuesday, May 26, the Research Center Jülich reached a significant milestone of German and European supercomputing with the inauguration of two new supercomputers: the supercomputer JUROPA and the fusion machine HPC FF. The symbolic start of the systems were triggered by the German Federal Minister for Education and Research, Prof. Dr. Annette Schavan, the Prime Minister of North Rhine-Westphalia, Dr. Jürgen Rüttgers, and Prof. Dr. Achim Bachem, Chairman of the Board of Directors at Research Center Jülich as well as high-ranking international guests from academia, industry and politics.

JUROPA (which stands for Juelich Research on Petaflop Architectures) will be used Pan-European-wide by more than 200 research groups to run their data-intensive applications. JUROPA is based on a cluster configuration of Sun Blade servers, Intel Nehalem processors, Mellanox 40Gb/s InfiniBand and Cluster Operation Software ParaStation from ParTec Cluster Competence Center GmbH. The system was jointly developed by experts of the Jülich Supercomputing Center and implemented with partner companies Bull, Sun, Intel, Mellanox and ParTec. It consists of 2,208 compute nodes with a total computing power of 207 Teraflops and was sponsored by the Helmholtz Community. Prof. Dr. Dr. Thomas Lippert, Head of Jülich Supercomputing Center, explains the HPC Installation in Jülich in the video below.

HPC-FF (High Performance Computing – for Fusion), drawn up by the team headed by Dr. Thomas Lippert, director of the Jülich Supercomputing Centre, was optimized and implemented together with the partner companies Bull, SUN, Intel, Mellanox and ParTec. This new best-of-breed system, one of Europe’s most powerful, will support advanced research in many areas such as health, information, environment, and energy. It consists of 1,080 computing nodes each equipped with two Nehalem EP Quad Core processors from Intel. Their total computing power of 101 teraflop/s corresponds, at the present moment, to 30th place in the list of the world’s fastest supercomputers. The combined cluster will achieve 300 teraflops/s computing power and will be included in the rating of the Top500 list, published this month at ISC’09 in Hamburg, Germany.

40Gb/s InfiniBand from Mellanox is used as the system interconnect. The administrative infrastructure is based on NovaScale R422-E2 servers from French supercomputer manufacturer Bull, who supplied the compute hardware and the SUN ZFS/Lustre Filesystem. The cluster operating system “ParaStation V5″ is supplied by Munich software company ParTec. HPC-FF is being funded by the European Commission (EURATOM), the member institutes of EFDA, and Forschungszentrum Jülich.

Complete System facts: 3288 compute nodes ; 79 TB main memory; 26304 cores; 308 Teraflops peak performance

The Automotive Makers Require Better Compute Simulations Capabilities

This week I presented in the LS-DYNA user conference. LS-DYNA is one of the most used applications for automotive related computer simulations – simulations that are being used throughout the vehicle design process and decreases the need to build expensive physical prototypes. Computer simulation usage has decreased the vehicle design cycle from years to month, and is responsible for cost reduction throughout the process. Almost every part in the vehicle is designed with computer aided simulations. From crash/safety simulation to engine and gasoline flow, from air condition to water pumps, almost every part of the vehicle is simulated.

Today challenges in vehicle simulations are around the motivation to build more economical and ecological designs, how to do design lighter vehicles (less material to be used) while meeting the increased safety regulation demands. For example, national and international standardizations have been put in place, which provide structural crashworthiness requirements for railway vehicle bodies.

In order to be able to meet all of those requirements and demands, higher compute simulation capability is required. It is not a surprise that LS-DYNA is being mostly used in high-performance clustering environments as they provide the needed flexibility, scalability and efficiency for such simulations. Increasing high-performance clustering productivity and the capability to handle more complex simulations is the most important factor for the automotive makers today. It requires using balanced clustering design (hardware – CPU, memory, interconnect, GPU; and software), enhanced messaging techniques and the knowledge on how to increase the productivity from a given design.

For LS-DYNA, InfiniBand interconnect-based solutions have been proven to provide the highest productivity compared to Ethernet (GigE, 10GigE, iWARP). With InfiniBand, LS-DYNA demonstrated high parallelism and scalability, which enabled it to take full advantage of multi-core high-performance computing clusters. In the case of Ethernet, the better choice between GigE, 10GigE and iWARP is 10GigE. While iWARP aim to provide better performance, typical high-performance applications are using send-receive semantics which iWARP does not provide any added value with, and even worse, it just increase the complexity and the CPU overhead/power consumption.

If you want to get a copy of a paper that present the capabilities to increase simulations productivity while decrease power consumption, don’t hesitate to send me a note (hpc@mellanox.com).

Gilad Shainer
shainer@mellanox.com

High-Performance Computing as a Service (HPCaaS)

High-performance clusters bring many advantages to the end user, including flexibility and efficiency. With the increasing number of applications being served by high-performance systems, new systems need to serve multiple users and applications. Traditional high-performance systems typically served a single application at a given time, but to maintain maximum flexibility a new concept of “HPC as a Service” (HPCaaS) has been developed. HPCaaS includes the capability of using clustered servers and storage as resource pools, a web interface for users to submit their job requests, and a smart scheduling mechanism that can schedule multiple different applications simultaneously on a given cluster taking into consideration the different application characteristics for maximum overall productivity.

HPC as a Service enables greater system flexibility since it eliminates the need for dedicated hardware resources per application and allows dynamic allocation of resources per given task while maximizing productivity. It is also the key component in bringing high-performance computing into cloud computing. Effective HPCaaS though, needs to take into consideration the application’s demands and provide the minimum hardware resources required per application. The scheduling of runs of multiple applications at once requires the proper balance of resources for each application proportional to their demands.

Research activities on HPCaaS are being performed at the HPC Advisory Council (http://hpcadvisorycouncil.mellanox.com/). The results show the need for high-performance interconnects, such as 40Gb/s InfiniBand, to maintain high productivity levels. It was also shown that scheduling mechanisms can be set to guarantee same levels of productivity in HPCaaS versus the “native” dedicated hardware approach. HPCaaS is not only critical for the way we will perform high-performance computing in the future, but as more HPC elements are brought into the data center, it will become an important factor when building the most efficient enterprise data centers.

Gilad Shainer
Director, Technical Marketing
gilad@mellanox.com

Unleashing Performance, Scalability and Productivity with Intel Xeon 5500 Processors “Nehalem”

The industry has been talking about it for a long time, but on March 30th, it was officially announced. The new Xeon 5500 “Nehalem” platform from Intel has introduced a totally new concept of server architecture for Intel-based platforms. The memory has moved from being connected to the chipset to be connected directly to the CPU, and the memory speed has increased. More importantly, PCI-Express (PCIe) Gen2 can now be fully utilized to unleash new performance and efficiency levels from Intel-based platforms. PCIe Gen2 is the interface between the CPU and memory to the networking that connects servers together to form compute clusters. With PCIe Gen2 now being integrated in compute platforms from the majority of OEMs, more data can be sent and received in a single server or blade. This means that applications can exchange data faster and complete simulations much faster, bringing a competitive advantage to end-users. In order to feed the PCIe Gen2, one needs to have a big pipe for his networking solutions, and this is what InfiniBand 40Gb/s brings to the table. No surprise that multiple server OEMs have announced the availability of 40Gb/s InfiniBand in conjunction with Intel announcement (for example HP and Dell).

 

I have been testing several applications to compare the performance benefits of Intel Xeon 5500 processors and Mellanox end-to-end 40Gb/s networking solutions. One of those applications was the Weather Research and Forecasting (WRF) application, widely used around the world. With Intel Xeon-5500-based servers and Mellanox 40Gb/s ConnectX InfiniBand adapters and MTS3600 36-port 40Gb/s InfiniBand switch system, we witnessed a 100% increase in performance and productivity over previous Intel platforms.

With a digital media rendering application – Direct Transport Compositor, we have seen a 100% increases in frames per second delivery, while increasing the screen anti-aliasing at the same time. Other applications have shown similar level of performance and productivity boost as well.

 

The reasons for the new performance levels are the decrease in the latency (1usec) and the huge increase in throughput (more than 3.2GB/s throughput uni-directional on more than 6.5GB/s bi-directional on a single InfiniBand port). With the increase in the number of CPU cores, and new server architecture, bigger pipes in and out from the servers are required in order to keep the system balanced and to avoid creating artificial bottlenecks. Another advantage for InfiniBand is its ability to use RDMA and transfer data directly to and from the CPU memory, without the involvement of the CPU in the data transfer activity. This mean one thing only – more CPU cycles can be dedicated to the applications!

 

Gilad Shainer

Director, HPC Marketing

Microsoft WHQL Certified Mellanox Windows OpenFabrics Drivers

Last week, Mellanox released the latest Microsoft WHQL certified Mellanox WinOF 2.0 (Windows OpenFabrics) drivers. This provides superior performance for low-latency, high-throughput clusters running on Microsoft Windows® HPC Server 2008.

You may be asking yourself, how does this address my cluster computing needs? Does the Windows OFED stack released by Mellanox provide the same performance seen on the Linux OFED stack release?

Well, the Windows networking stack is optimized to address the needs of various HPC vertical segments. In our benchmark tests with MPI applications that require low-latency and high-performance, the latency is in the low 1us with bandwidth of 3GByte/sec uni-directional using the Microsoft MS-MPI protocol.

Mellanox’s 40Gb/s InfiniBand Adapters (ConnectX) and Switches (InfiniScale IV) with their proven performance efficiency and scalability, allow data centers to scale up to tens-of-thousands of nodes with no drop in performance.  Our drivers and Upper Level Protocols (ULPs) allow end-users to take advantage of the RDMA networking available in Windows® HPC Server 2008.

Here is the link to show the compute efficiency of Mellanox InfiniBand compute nodes compared to Gigabit Ethernet (GigE) compute nodes performing mathematical simulations on Windows® HPC Server 2008.

As the saying goes “The proof is in the pudding.” Mellanox InfiniBand interconnect adapters and technology is the best option for all Enterprise Data Center and High Performance computing needs.

Satish Kikkeri
satish@mellanox.com