Tag Archives: interconnect

How Scale-Out Systems Affect Amdahl’s Law

Amdahl's LawIn 1967, Gene Amdahl developed a formula that calculates the overall efficiency of a computer system by analyzing how much of the processing can be parallelized and the amount of parallelization that can be applied in the specific system.

At that time, deeper performance analysis had to take into consideration the efficiency of three main hardware resources that are needed for the computation job: the compute, memory and storage.

On the compute side, efficiency has to be measured by how many threads can run in parallel (which depends on the number of cores).  The memory size affects the percentage of IO operation that needs to access the storage, which slows significantly the execution time and the overall system efficiency.

Those three hardware resources worked very well until the beginning of 2000. At that time, the computer industry started to use a grid-computing or as it known today, scale-out systems.  The benefits of the scale-out architecture are clear. It enables building systems with higher performance, easy to scale with built-in high availability at a lower cost. However, the efficiency of those systems heavily depend on the performance and the resiliency of the interconnect solution.

The importance of the Interconnect became even bigger in the virtualized data center, where the amount of east west traffic continues to grow (as more parallel work is being done). So, if we want to use Amdahl’s law to analyze the efficiency of the scale-out system, in addition to the three traditional items (compute, memory & storage) the fourth item, which is the Interconnect, has to be considered as well.

Continue reading

RDMA – Cloud providers “secret sauce”

Written By: Eli Karpilovski, Manager, Cloud Market Development

 

With expansive growth expected in the cloud-computing market, some researches expects the market will grow from $70.1 billion in 2012 to $158.8 billion in 2014 – cloud service providers must find ways to provide increasingly sustainable performance. At the same time, they must accommodate an increasing number of internet users, whose expectations about improved and consistent response times are growing.

 

However, service providers cannot increase performance if the corresponding cost also rises. What these providers need is a way to deliver low latency, fast response, and increasing performance while minimizing the cost of the network.

 

One good example to accomplish that is RDMA, Traditionally centralized storage was either slow or created bottlenecks and deemphasized the need for fast storage networks. With the advent of fast solid state devices, we are seeing a need for a VERY fast and converged network, to leverage the capabilities that is been offered, in particular, we are starting to see cloud arch using RDMA based storage appliances to accelerate access storage time, reduce latency and achieve the best CPU utilization on the end point.

 

To learn more about the usage of RDMA in providing cloud infrastructure requirements for meeting performance, availability and agility needs, now and in the future check the following link.

 

Mellanox- InfiniBand makes headway in the cloud – YouTube

RDMA Interconnects for Storage: Fast, Efficient Data Delivery

Written By: Erin Filliater, Enterprise Market Development Manager

We all know that we live in a world of data, data and more data. In fact, IDC predicts that in 2015, the amount of data created and replicated will reach nearly 8 Zettabytes. With all of this data stored in external storage systems, the way data is transferred from storage to a server or application becomes critical to effectively utilizing that information. Couple this with today’s shrinking IT budgets and “do more with less” mindsets, and you have a real challenge on your hands. So, what’s a data center storage administrator to do?

Remote Direct Memory Access (RDMA) based interconnects offer an ideal option for boosting data center efficiency, reducing overall complexity and increasing data delivery performance. Available over InfiniBand and Ethernet, with RDMA over Converged Ethernet (RoCE), RDMA allows data to be transferred from storage to server without passing the data through the CPU and main memory path of TCP/IP Ethernet. Greater CPU and overall system efficiencies are attained because the storage and servers’ compute power is used for just that—computing—instead of processing network traffic. Bandwidth and latency are also of interest: both InfiniBand and RoCE feature microsecond transfer latencies, and bandwidths up to 56Gb/s. Plus, both can be effectively used for data center interconnect consolidation. This translates to screamingly fast application performance, better storage and data center utilization and simplified network management.

On a performance basis, RDMA based interconnects are actually more economical than other alternatives, both in initial cost and in operational expenses. Additionally, because RDMA interconnects are available with such high bandwidths, fewer cards and switch ports are needed to achieve the same storage throughput. This enables savings in server PCIe slots and data center floor space, as well as overall power consumption. It’s an actual solution for the “do more with less” mantra.

So, the next time your application performance isn’t making the grade, rather than simply adding more CPUs, storage and resources, maybe it’s time to consider a more efficient data transfer path.

Find out more: http://www.mellanox.com/page/storage