

Scaling 10Gb/s Clustering at Wire-Speed

InfiniBand offers cost-effective wire-speed scaling with deterministic performance

Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400 Fax: 408-970-3403 http://www.mellanox.com

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

Introduction
Data center and high performance computing clusters that cannot compromise on scalable and
deterministic performance need the ability to construct large node count non-blocking switch
configurations. To deliver service level agreements (SLA) with their applications based on
10Gb/s or higher networking speeds, it is necessary to utilize Clos networks, more commonly
known as “Fat Tree” or Constant Bisectional Bandwidth (CBB) networks. A Clos network is a
switch topology in which integrated non-blocking switch elements (crossbars) with a relatively low
number of ports are used to build a non-blocking switch topology supporting a much larger
number of endpoints.

There are two important aspects of constructing CBB networks: 1. topology 2. link level
forwarding. Topology defines how the network is physically connected together. From a purely
physical perspective, point to point networks are virtually identical and any topology can be
constructed using similar crossbar switch elements. Forwarding deals with the way individual
packets are actually routed through the physical topology and thus effectively define a logical
topology that exists on top of the physical one.

While all point to point technologies can implement the same physical topologies, this is not the
case with the logical topology created by different forwarding algorithms. In fact, unlike InfiniBand,
bridged Ethernet imposes severe constraints on what types of logical topologies can be
implemented and typically can not make efficient use of the underlying physical topology. In order
to overcome this limitation of layer 2 Ethernet switches, it is necessary to use layer 3 (and higher)
IP switches. Using layer 3 and above switches severely impact price and deterministic
performance metrics (both bandwidth and latency) critical in the data center.

Topology

Clos, CBB, and Fat Tree Networks
The concept of a CBB or Fat-Tree topology is based on the seminal 1953 work on non-blocking
switch networks by Charles Clos1. This paper describes how a non-blocking switch network can
be constructed using minimal number of basic switch building blocks.

In order to be strictly non-blocking, several key requirements must be met. The basic
requirement is that the crossbar switches which make up the network, must be configured
appropriately in order to offer non-blocking forwarding for the particular traffic pattern being
switched. This requirement is easily met in the case of the public switched telephone network for
which Clos networks were originally designed, since voice conversations are relatively long lived
compared to the time required to set up the crossbar switch forwarding tables.

This basic requirement is not met by packet based networks since every packet is routed
independently through the network of switches. Nonetheless, for a very large set of typical
networking applications, there exist traffic patterns which closely resemble long lived circuit
switched connections. Because of this fact, Clos networks have been successfully used in packet
based networks, and to first order, provide non-blocking switch configurations. Leiserson2 was
the first to recognize this and extended the concept of a Clos net-work from telecommunications
to high performance computing communications based on “fat tree” networks.

1 C. Clos, A study of non-blocking switching networks, Bell System Technical Journal, Vol.
32, 1953, pp. 406-424.

2 Charles E. Leiserson: Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing., IEEE Transactionson Computers, Vol 34, October 1985, pp 892-901

©2006 MellanoxTechnologies Inc. 2

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

Figure 1 shows both a simple binary tree as well as a fat tree topology. As can be seen in the
simple binary tree, the number of links and thus the aggregate bandwidth is reduced by half at
each stage of the network. This can result in serious congestion “hot spots”’ towards the root as
all traffic funnels into a single link. The fat tree topology remedies this situation by maintaining
identical bandwidth at each level of the network. Another way to look at the fat tree is to imagine a
line that bisects the network into an equal number of endpoints. In a fat tree topology any such
bisection line would cut an equal number of links - hence the name Constant Bi-Sectional
Bandwidth. Note that the diagram shows simple switch elements with only a few ports, however
the CBB topology is readily extended to higher port count crossbar switch building blocks.

Binary Tree Fat Tree

 Figure 1: Binary and Fat Tree topologies

In general, the Clos, CBB, and Fat Tree networks describe identical switch topologies, however,
in high performance compute clusters the CBB nomenclature is most common and thus will be
used from here on.

So what is the point of building a CBB network? Given a basic switch building block with N ports
and the requirement to build a switch network to connect to M end nodes (where M > N), a CBB
network defines an efficient topology using multiple levels of basic switch elements providing a
non-blocking switch configuration supporting M endpoints. In such multi-level switch
architectures, some of the ports of each basic switch element are connected to end nodes, while
other ports are connected internally to additional levels of basic switch elements which do not
connect to endpoints.

As previously described, the key attribute of the CBB topology is that for any given level of the
switch topology, the amount of bandwidth connected to the downstream end nodes is identical to
the amount of bandwidth connected to the upstream path used for interconnection. Note that the
links are bidirectional so the notion of upstream and downstream describes the direction of the
interconnect topology towards or away from the shortest path to an end node, rather than the
actual data flow.

©2006 MellanoxTechnologies Inc. 3

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

Two Level CBB Network Example

P/2 Ports P/2 Ports P/2 Ports P/2 Ports

P/2 Ports

Level 2
Switches

Level 1
Switches

P/2 Ports P/2 Ports P/2 Ports P/2 Ports

P/2 Ports

Level 2
Switches

Level 1
Switches

Figure 2: Example of a simple two level CBB switch topology

Consider the two level switch topology shown in Figure 2. It is constructed with basic switch
building blocks having P ports. Suppose there are N1 Level 1 switches, each of which has P/2
ports connected downstream to end nodes, and an identical number connected upstream to the
second level switch. The total number of end points connected is then: N1 * P/2. Suppose for
example each basic switch building block has eight ports and a two level network is constructed
with four ports connected both to end points and Level 2 switches as shown. There are four Level
1 switches so: P=8 and N1=4, hence using an 8 port building block this topology builds a 16 port
non-blocking switch. It is possible to connect more total endpoints by increasing the number of
Level 1 switches and even further by increasing the number of levels in the switch topology. The
key to making the configurations non-blocking is to always preserve identical bandwidth
(upstream and downstream) between any two levels of the multi-level switch topology.

Closer examination of the example yields the observations that for two level CBB networks, the
total number of basic switch element ports used is three times the total number of end nodes
being connected. This is so because for each end node being connected there is another Level 1
switch port which connects to yet a third port on a second level switch element. Thus the 16 end
nodes supported in the example use six separate eight port switches requiring a total of 48 ports.

Link Level Forwarding, Loops, and Logical Topologies
While point to point networks are nearly identical at the topology (physical) level, there are
profound differences at the logical level. Two key issues related to link level forwarding are: 1.
spanning (the ability of every node to communicate with every other node) and 2. loop breaking.
Many different algorithms are available to address these issues, but these algorithms have a
profound impact on network performance.

Of the two, providing an algorithm that spans is fairly straightforward, whereas, loop breaking is
the more critical issue. Loop breaking is required since the physical network topology is human
administered and therefore it can not be guaranteed that the network is physically connected so
as to be free of loops. Network loops are problematic since it is possible that a packet forwarded
from the output port of a crossbar switch, may ultimately arrive to an input port of the same
crossbar switch. This crossbar element will, of course, forward the packet out from the same
output port originally used to transmit it, thereby creating a transmission loop. Under these
circumstances and without any other mechanisms to resolve the situation, the packet will flow
indefinitely in a loop consuming bandwidth and ultimately creating a fully congested network

©2006 MellanoxTechnologies Inc. 4

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

unable to forward any other traffic. In short, loops are a potentially catastrophic aspect of
switched networks that must be algorithmically addressed by any useful forwarding algorithm.

Ethernet Forwarding and the Spanning Tree Algorithm
Ethernet adopted a simple but elegant algorithm, known as the spanning tree algorithm, to deal
with loops. Every layer 2 Ethernet switch is required to run this algorithm during initialization, and
periodically to be able to accommodate changes to the physical network. The algorithm can be
briefly explained as follows:

Every layer 2 switch in the network starts by broadcasting a 2-Tuple consisting of its (i) own
unique NodeID and (ii) a cost of 0. Every layer 2 switch in the network continues to broadcast a
2-Tuple consisting of i. the best (lowest) NodeID received via any port and ii. the best cost (in
terms of number of hops) required to reach this best ID. If the switch receives a better {NodeID,
cost} it will increment the cost by 1 and start sending this new {NodeID,cost}2-Tuple. Ultimately,
the switch with the best NodeID is recognized throughout the network as the root node. Every
switch will determine its own root port which provides the lowest cost to the root node. Ports with
ties in the cost metric will be arbitrarily decided by the port number and a single root port chosen.
In addition, every switch will also determine ports for which “self” has been identified as the best
for-warding bridge. All other ports will be logically turned off (no packets forwarded out these
ports).

More or less this is it - elegant and simple at breaking loops but unfortunately not ideal for CBB
networks as will be shown.

Problems with Spanning Tree for Implementing CBB Clusters
This description overly simplifies the spanning tree algorithm which also includes enhancements
such as switches periodically scanning the network and discarding information to accommodate
network changes and device failure. Nonetheless, the description captures the essence of the
algorithm and is adequate to understand the algorithm’s limitations for construction of CBB
networks for clustering. As an example, let’s apply the spanning tree algorithm to the network as
shown. For simplicity assume the unique IDs of the various switches range from 1 to 6 as shown
in Figure 3. Clearly, as the spanning tree algorithm progresses, the switch on the upper left with
the ID of 1 will emerge as root node.

P/2 Ports

Level 2
Switches

Level 1
Switches

1 2

3 4 5 6

Figure 3: Fat tree topology with switches labeled with arbitrary unique IDs 1-6

Now, since the shortest path to the root node is directly to switch #1, the spanning tree algorithm
will disable all level 1 switch ports that connect to the second level switch labeled #2.

©2006 MellanoxTechnologies Inc. 5

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

Furthermore, one of the two ports from each of the level 1 switch connecting to switch #1 will be
disabled, leaving only one active port. So the physical CBB network reduces to the logical
network as shown in Figure 4 with disabled ports and switches shown with red dotted lines.

P/2 Ports

Level 2
Switches

Level 1
Switches

1 2

3 4 5 6

Figure 4: Logical network after Spanning Tree Algorithm disables ports to
eliminate loops (disabled elements shown with dotted lines)

In essence, switch #2 is logically removed from the network. Furthermore only half of the links
available between the level 1 switches and switch #1 are now active. The reason the spanning
tree algorithm behaves this way is that its goal is to provide a loop free logical network that spans
to every node (i.e. every node in the network is reachable by every other node). Thus, only
connectivity is considered and preserving balanced bandwidth is not. Consequently, switch #2 is
logically removed as it does not provide any additional spanning connectivity that is not provided
by switch #1. Similarly the redundant inter-level links, though allowing for balanced bandwidth
connections, are discarded as superfluous by the spanning tree algorithm.
Without balanced bandwidth facilities, the Ethernet network becomes subjected to numerous
congestion points leading to dropping of packets and throttling of injection rates in transmit nodes
leading to less than wire speed and non-deterministic performance. In other words, the spanning
tree algorithm does not allow the use of layer 2 Ethernet switches to build CBB cluster networks.

Scaling and Cost Challenges with Other Alternatives
Use of link aggregation schemes (such as IEEE 802.3ad) to bundle links or ports to single logical
ports is an option that can be deployed. However, load balancing and aggregation across the
links in the bundle are based on fixed algorithms and not designed for addressing dynamically
changing traffic patterns or congestion points. When the number of switch tiers in the network
infrastructure increases, programming of the link aggregation algorithms to meet the needs of the
network becomes an IT manager’s headache. As such, link aggregation schemes solve localized
bandwidth restrictions, but cannot scale to provide wire-speed routing across the data center
network.

Use of higher level (layer 3 and above) Ethernet switches with different routing algorithms is
another option, but again, these are not designed with CBB clustering networks in mind.
Furthermore, IP routing requires sophisticated functionality such as longest pre-fix matching, sub-
netting, and super-netting. This functionality requires advanced processing which requires use of
store-and-forward methods, and thus precludes the use of “cut-through” switches. The
requirement for store-and-forward and advanced processing introduces significant switch latency,
makes performance non-deterministic and greatly increases the cost of these switches.

©2006 MellanoxTechnologies Inc. 6

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

InfiniBand Forwarding Can Scale Deterministically
By contrast, InfiniBand does not dictate the use of the spanning tree algorithm and, in fact, does
not mandate any specific algorithm at all. Instead, InfiniBand defines a set of forwarding and loop
breaking mechanisms on top of which any destination routed algorithm may be implemented. The
choice of algorithm is a function of the Subnet Manager (SM) which is responsible for discovering
the physical topology and set up the logical topology by configuring the forwarding tables in each
switch.

A single master SM is required to manage an InfiniBand subnet which may reside on any node
(typically running on a switch or host server). The SM is a software process and thus
configuration policies are completely flexible and can implement appropriate high performance
forwarding algorithms. In the case of a CBB network, as shown, a weighted, shortest mean path
algorithm is typically implemented so that traffic is evenly distributed across the available
connectivity and loops are prevented. Using these more sophisticated algorithms, InfiniBand can
address the issue of loop breaking, without sacrificing the ability to recognize logical topologies
that take full advantage of the physical topologies.

In fact, other even more advanced load balancing and dynamic algorithms are possible which can
take advantage of InfiniBand’s multi-path, virtual lane, and automatic path migration algorithms.
Multi-pathing extends InfiniBand’s destination routing capabilities such that traffic flows to a given
endpoint can actually traverse different paths through the network. This allows load balancing
software to monitor the network, detect hot spots, and choose different routes through the
network to avoid traffic and avoid congestion. Similarly, automatic path migration capabilities
which are useful to implement failover can also be used by sophisticated routing algorithms.

Furthermore, with InfiniBand, the SM has mechanisms other than port disabling to break potential
loops. For example, InfiniBand offers service level to virtual lane mapping functionality which
allows packets erroneously received to be dropped without actually completely disabling a port.
These more powerful mechanisms allow InfiniBand fabrics to take full advantage of the physical
topology and distribute traffic across links to make best use of all available bandwidth.

The user is shielded from all this sophistication as the SM automatically and transparently
discovers and initializes the fabric. For users who do want direct control of configuring the logical
topology, the SM provides a software interface to allow user programmable algorithms to be
implemented. Thus, InfiniBand architecture provides the best combination of automatic
provisioning with the flexibility to implement optional user defined algorithms.

At an even lower level, InfiniBand Architecture is a loss-less fabric and includes mechanisms that
avoid dropped packets and guarantee in-order packet delivery. InfiniBand defines link level, credit
based flow control so that packet data is not transmitted unless there is guaranteed buffering at
the receiving end of the link. This means that, unlike Ethernet, the InfiniBand link level fabric does
not drop packets due to buffer overruns and thus provides guaranteed in-order delivery and
deterministic performance.

Summary
Constant Bi-Sectional Bandwidth (CBB) or Fat Tree networks have emerged as a key ingredient
to deliver non-blocking and scalable bandwidth for high performance computing and other large
scale data center clusters. In addition to wiring the network to provide a physical CBB network
topology, system architects also need to pay close attention to the underlying networking
technology. The spanning tree algorithm required by Ethernet layer 2 switches is not able to
exploit physical CBB fat tree topologies. Moving to expensive layer 3 switches solves the
spanning tree related scaling problem, but adds the overhead of additional layer 3 algorithms and
store-and-forward switching.

©2006 MellanoxTechnologies Inc. 7

White Paper: Scaling 10Gb/s Clustering at Wire-Speed

InfiniBand on the other hand combines automatic configuration and flexibility of the forwarding
algorithm, to be able to fully take advantage of the underlying CBB network. As such, InfiniBand
can scale deterministically, maintaining full wire speed across the cluster, and through use of
simple cut-through switching, helps keep costs down to a minimum.

©2006 MellanoxTechnologies Inc. 8

	
	Introduction
	Topology
	Clos, CBB, and Fat Tree Networks
	Two Level CBB Network Example

	Link Level Forwarding, Loops, and Logical Topologies
	Ethernet Forwarding and the Spanning Tree Algorithm
	Problems with Spanning Tree for Implementing CBB Clusters
	Scaling and Cost Challenges with Other Alternatives
	InfiniBand Forwarding Can Scale Deterministically
	Summary

