ConnectX®-4 EN for Open Compute Project (OCP)

Single-Port 10/25/40/50/100 Gigabit Ethernet Adapters supporting Multi-Host Technology

ConnectX-4 EN Network Controller with 10/25/40/50/100 Gb/s Ethernet interface delivers high-bandwidth, low latency and industry-leading Ethernet connectivity for Open Compute Project (OCP) server and storage applications in Web 2.0, Enterprise Data Centers and Cloud infrastructure.

With ConnectX-4 EN, server and storage applications will achieve significant throughput and latency improvements resulting in faster access, real-time response and more virtual machines hosted per server. ConnectX-4 EN for Open Compute Project (OCP) specification 2.0 improves network performance by increasing available bandwidth while decreasing the associated transport load on the CPU especially in virtualized server environments.

Moreover, ConnectX-4 EN introduces the new Multi-Host Technology, which enables a new innovative rack design that achieves maximum CAPEX and OPEX savings without compromising on network performance.

Mellanox Multi-Host™ Technology

Mellanox’s ConnectX-4 Multi-Host¹ provides high speed interconnect to up to four separate hosts from a single NIC with no performance degradation on any of them. Furthermore, ConnectX-4 EN offers four fully-independent PCIe buses, lowering total cost of ownership in the data center by reducing CAPEX requirements from four cables, NICs, and switch ports to only one of each, and by reducing OPEX by cutting down on switch port management and overall power usage.

Each host can be active or inactive at any time, independent of the other hosts, and receives bandwidth of its own. Bandwidth is split between the hosts, either evenly (default) or based on configurable differentiated Quality of Service (QoS), depending on the data center’s needs.

Multi-Host technology features uncompromising independent host management, with full independent NC-SI/MCTP support to each host and to the NIC. IT managers can remotely control the configuration and power state of each host individually, such that management of one host does not affect host traffic performance or the management of the other hosts, guaranteeing host security and isolation. To further lower the total cost of ownership, ConnectX-4 supports management of the multiple hosts using a single BMC, with independent NC-SI/MCTP management channels for each of the managed hosts.

Multi-Host also supports a heterogeneous data center architecture; the various hosts connected to the single adapter can be x86, Power, GPU, or ARM, thereby removing any limitations in passing data or communicating between CPUs.

I/O Virtualization

ConnectX-4 EN SR-IOV technology provides dedicated adapter resources and guaranteed isolation and protection for virtual machines (VMs) within the server. I/O virtualization with ConnectX-4 EN gives data center administrators better server utilization while reducing cost, power, and cable complexity, allowing more

¹ Mellanox Multi-Host is patent pending.
Virtual Machines and more tenants on the same hardware. ConnectX-4 EN’s SR-IOV capability and Multi-Host technology are mutually exclusive, and each host in a Multi-Host server can leverage an individual SR-IOV implementation.

Overlay Networks
In order to better scale their networks, data center operators often create overlay networks that carry traffic from individual virtual machines over logical tunnels in encapsulated formats such as NVGRE and VXLAN. While this solves network scalability issues, it hides the TCP packet from the hardware offloading engines, placing higher loads on the host CPU. ConnectX-4 EN effectively addresses this by providing advanced NVGRE and VXLAN hardware offloading engines that encapsulate and de-capsulate the overlay protocol headers, and enable the traditional offloads to be performed on the encapsulated traffic for these and other tunneling protocols (GENEVE, MPLS, QinQ, and so on). With ConnectX-4 EN, data center operators can achieve native performance in the new network architecture.

RDMA over Converged Ethernet (RoCE)
ConnectX-4 EN supports RoCE specifications delivering low-latency and high performance over Ethernet networks. Leveraging data center bridging (DCB) capabilities as well as ConnectX-4 EN advanced congestion control hardware mechanisms, RoCE provides efficient low-latency RDMA services over Layer 2 and Layer 3 networks.

Mellanox PeerDirect™
PeerDirect™ communication provides high efficiency RDMA access by eliminating unnecessary internal data copies between components on the PCIe bus (for example, from GPU to CPU), and therefore significantly reduces application run time. ConnectX-4 EN advanced acceleration technology enables higher cluster efficiency and scalability to tens of thousands of nodes.

Storage Acceleration
Storage applications will see improved performance with the higher bandwidth ConnectX-4 EN delivers. Moreover, standard block and file access protocols can leverage RoCE for high-performance storage access. A consolidated compute and storage network achieves significant cost-performance advantages over multi-fabric networks.

Distributed RAID
ConnectX-4 EN delivers advanced Erasure Coding offloading capability, enabling distributed Redundant Array (RAID) of Inexpensive Disks, a data storage technology that combines multiple disk drive components into a logical unit for the purposes of data redundancy and performance improvement.

ConnectX-4 EN’s Reed-Solomon capability introduces redundant block calculations, which, together with RDMA, achieves high performance and reliable storage access.

Signature Handover
ConnectX-4 EN supports hardware checking of T10 Data Integrity Field / Protection Information (T10-DIF/PI), reducing the CPU overhead and accelerating delivery of data to the application. Signature handover is handled by the adapter on ingress and/or egress packets, reducing the load on the CPU at the Initiator and/or Target machines.

Software Support
All Mellanox adapter cards are supported by Windows, Linux distributions, VMware, FreeBSD, and Citrix XENServer. ConnectX-4 EN supports various management interfaces and has a rich set of tool for configuration and management across operating systems.

FEATURE SUMMARY

<table>
<thead>
<tr>
<th>ETHERNET</th>
<th>MULTI-HOST</th>
<th>STORAGE OFFLOADS</th>
<th>DISTINCT FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 100GbE / 50GbE / 40GbE / 25GbE / 10GbE</td>
<td>– Up to 4 separate PCIe interfaces to 4 independent hosts</td>
<td>– RAID offload - erasure coding (Reed-Salomon) offload</td>
<td>– Hardware-based reliable transport</td>
</tr>
<tr>
<td>– IEEE 802.3bj, 802.3bm 100 Gigabit Ethernet</td>
<td>– Two PCIe x8 to two hosts or four PCIe x4 to four hosts or four PCIe x2 to four hosts</td>
<td>– T10 DIF - Signature handover operation at wire speed, for ingress and egress traffic</td>
<td>– Collective operations offloads</td>
</tr>
<tr>
<td>– 25G Ethernet Consortium 25, 50 Gigabit Ethernet</td>
<td></td>
<td></td>
<td>– Vector collective operations offloads</td>
</tr>
<tr>
<td>– IEEE 802.3ba 40 Gigabit Ethernet</td>
<td></td>
<td></td>
<td>– PeerDirect™ RDMA (aka GPUDirect) communication acceleration</td>
</tr>
<tr>
<td>– IEEE 802.3ae 10 Gigabit Ethernet</td>
<td></td>
<td></td>
<td>– 64/66 encoding</td>
</tr>
<tr>
<td>– IEEE 802.3az Energy Efficient Ethernet</td>
<td></td>
<td></td>
<td>– Hardware-based reliable multicast</td>
</tr>
<tr>
<td>– IEEE 802.3ap based auto-negotiation and KR startup</td>
<td></td>
<td></td>
<td>– Extended Reliable Connected transport (XRC)</td>
</tr>
<tr>
<td>– Proprietary Ethernet protocols (20/40GBASE-R2, 50/56GBASE-R4)</td>
<td></td>
<td></td>
<td>– Dynamically Connected transport (DCT)</td>
</tr>
<tr>
<td>– IEEE 802.3ad, 802.1AX Link Aggregation</td>
<td></td>
<td></td>
<td>– Enhanced Atomic operations</td>
</tr>
<tr>
<td>– IEEE 802.1Qau (QCN) – Congestion Notification</td>
<td></td>
<td></td>
<td>– Advanced memory mapping support, allowing user mode registration and remapping of memory (UMR)</td>
</tr>
<tr>
<td>– UMR</td>
<td>– IEEE 802.1Qbg</td>
<td></td>
<td>– On demand paging (ODP)</td>
</tr>
<tr>
<td>– Jumbo frame support (9.6KB)</td>
<td>– Jumbo frame support (9.6KB)</td>
<td></td>
<td>– Registration free RDMA memory access</td>
</tr>
</tbody>
</table>
OVERLAY NETWORKS
– Stateless offloads for overlay networks and tunneling protocols
– Hardware offload of encapsulation and decapsulation of NVGRE and VXLAN overlay networks

HARDWARE-BASED I/O VIRTUALIZATION
– Single Root IOV
– Multi-function per port
– Address translation and protection
– Multiple queues per virtual machine
– Enhanced QoS for vNICs
– VMware NetQueue support

REMOTE BOOT
– Remote boot over Ethernet
– Remote boot over iSCSI
– PXE and UEFI

VIRTUALIZATION
– SRIOV: Up to 512 Virtual Function
– SRIOV: Up to 16 Physical Functions per host
– Virtualization hierarchies (e.g., NPAR and Multi-Host)
 • Virtualizing Physical Functions on a physical port
 • SRIOV on every Physical Function
– 1K ingress and egress QoS levels
– Guaranteed QoS for VMs CPU

OFFLOADS
– RDMA over Converged Ethernet (RoCE)
– TCP/UDP/IP stateless offload
– LSO, LRO, checksum offload
– RSS (can be done on encapsulated packet), TSS, HDS, VLAN insertion / stripping, Receive flow steering
– Intelligent interrupt coalescence

PROTOCOL SUPPORT
– OpenMPI, IBM PE, OSU MPI (MVAPICH/2), Intel MPI
– Platform MPI, UPC, Open SHMEM
– TCP/UDP, MPLS, VxLAN, NVGRE, GENEVE
– iSER, NFS RDMA, SMB Direct
– uDAPL

MANAGEMENT AND CONTROL INTERFACES
– NC-SI, MCTP over SMBus and MCTP over PCIe - Baseboard Management Controller interface
– SDN management interface for managing the eSwitch
– PC interface for device control and configuration
– General Purpose I/O pins
– SPI interface to Flash
– JTAG IEEE 1149.1 and IEEE 1149.6

PCI EXPRESS INTERFACE
– PCIe Gen 3.0 compliant, 1.1 and 2.0 compatible
– 2.5, 5.0, or 8.0GT/s link rate x16
– Auto-negotiates to x16, x8, x4, x2, or x1
– Support for MSI/MSI-X mechanisms

CONNECTIVITY
– Interoperable with 10/25/40/50/100Gb Ethernet switches
– Passive copper cable with ESD protection
– Powered connectors for optical and active cable support

OPERATING SYSTEMS/DISTRIBUTIONS*
– RHEL/CentOS
– Windows
– FreeBSD
– VMware
– OpenFabrics Enterprise Distribution (OFED)
– OpenFabrics Windows Distribution (WinOF)

* This section describes hardware features and capabilities. Please refer to the driver release notes for feature availability.

Feature Summary

<table>
<thead>
<tr>
<th>Ordering Part Number</th>
<th>Description</th>
<th>OCP Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCX441A-ACAN</td>
<td>ConnectX-4 EN network interface card for OCP, 25GbE single-port QSFP28, PCIe3.0 x8, no bracket, ROHS R6</td>
<td>Spec 0.5</td>
</tr>
<tr>
<td>MCX443M-BCBN_FB</td>
<td>ConnectX-4 EN network interface card for OCP with Multi-Host, 40GbE single-port QSFP28, PCIe3.0 x8, no bracket, ROHS R6</td>
<td>Spec 2.0</td>
</tr>
<tr>
<td>MCX445M-BCAN</td>
<td>ConnectX-4 EN network interface card for OCP with Multi-Host, 40/56GbE single-port QSFP28, PCIe3.0 x16, no bracket, ROHS R6</td>
<td>Spec 2.0</td>
</tr>
<tr>
<td>MCX445M-GCAN</td>
<td>ConnectX-4 EN network interface card for OCP with Multi-Host, 50GbE single-port QSFP28, PCIe3.0 x16, no bracket, ROHS R6</td>
<td>Spec 2.0</td>
</tr>
<tr>
<td>MCX445M-CCAN</td>
<td>ConnectX-4 EN network interface card for OCP with Multi-Host, 100GbE single-port QSFP28, PCIe3.0 x16, no bracket, ROHS R6</td>
<td>Spec 2.0</td>
</tr>
</tbody>
</table>

© Copyright 2015, Mellanox Technologies. All rights reserved. Mellanox, BridgeX, ConnectX, COG-Direct, InfiniBridge, InfiniHost, InfiniScale, MLNX-OS, PhyX, SwitchX, Virtual Protocol Interconnect and Voltaire are registered trademarks of Mellanox Technologies, Ltd. Connect-IB, Conflex, FabricT, Mellanox Federal Systems, Mellanox Software Defined Storage, Mellanox Virtual Modular Switch, Merriefit, Metriffit, Mellanox Open Ethernet, Open Ethernet, ScalableHPC, Unbreakable-Link, UFM and Unified Fabric Manager are trademarks of Mellanox Technologies, Ltd. All other trademarks are property of their respective owners.